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Proof of Proposition 1. 

In all cases the solution in (2) is unique due to strict concavity, and first order conditions 

(FOC) for a maximum are also sufficient. 

(a) By A1 there is a unique xf > 0 satisfying the condition in part (a) of Proposition 1.  

(i) We have fʹ′(L) ≥ fʹ′(xf) ≡ kgʹ′(0).  Thus Lf = L and Lg = 0 satisfies the FOC 

for a maximum. 

(ii) The solution cannot have Lf = 0 because then the FOC implies kgʹ′(L) ≥ 

fʹ′(0) > kgʹ′(0) > kgʹ′(L), which is a contradiction.  The solution cannot have 

Lg = 0 because then the FOC implies fʹ′(L) ≥ kgʹ′(0) ≡ fʹ′(xf) > fʹ′(L), which is 

a contradiction.  It follows that Lf > 0 and Lg > 0.  The FOC for an interior 

solution is fʹ′(Lf) = kgʹ′(Lg). 

(b) The proof parallels (i) and (ii) in part (a). 

(c) The proof parallels (ii) in part (a). 

(d) H(L, k) is continuous in (L, k) by the theorem of the maximum.  It is increasing in 

L for a fixed k because f is increasing in Lf and g is increasing in Lg.  To show that 

H is strictly concave in L, fix k > 0, choose any Lʹ′ ≠ Lʹ′ʹ′, and choose any µ ∈ (0, 

1).  Let (Lfʹ′, Lgʹ′) be optimal for the total labor supply Lʹ′ and let (Lfʹ′ʹ′, Lgʹ′ʹ′) be 

optimal for the total labor supply Lʹ′ʹ′.  Define Lf* ≡ µLfʹ′ + (1-µ)Lfʹ′ʹ′ and Lg* ≡ µLgʹ′ 
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+ (1-µ)Lgʹ′ʹ′.  Notice that (Lf*, Lg*) is a feasible allocation of the total labor supply 

L* = µLʹ′ + (1-µ)Lʹ′ʹ′.  This implies H(L*, k) ≥ f(Lf*) + kg(Lg*) > µf(Lfʹ′) + (1-

µ)f(Lfʹ′ʹ′) + µkg(Lgʹ′) + (1-µ)kg(Lgʹ′ʹ′) = µH(Lʹ′, k) + (1-µ)H(Lʹ′ʹ′, k).  The strict 

inequality in this sequence follows because f(Lf*) > µf(Lfʹ′) + (1-µ)f(Lfʹ′ʹ′) due to 

the strict concavity of f, and kg(Lg*) > µkg(Lgʹ′) + (1-µ)kg(Lgʹ′ʹ′) due to the strict 

concavity of g.  This establishes that H(L, k) is strictly concave in L. 

(e) Due to H(0, k) = 0, the strict concavity of H implies H(µL, k) > µH(L, k) for all L 

> 0 and µ ∈ (0, 1).  This yields H(µL, k)/µL > H(L, k)/L for all L > 0 and µ ∈ (0, 

1).  Thus h(L, k) ≡ H(L, k)/L is decreasing in L.   

(f) (i) Let [Lf(L), Lg(L)] be the optimal allocation for L > 0.  One and only one of 

parts (a), (b), or (c) above must apply.  Suppose (a) applies.  Then for sufficiently 

small L > 0 we have H(L, k) = f(L) and h(L, k) = f(L)/L.  This implies that as L → 

0, we have h(L, k) → fʹ′(0) > kgʹ′(0).  Therefore h(0, k) = max {fʹ′(0), kgʹ′(0)}.  The 

proofs for (b) and (c) are similar. 

 (ii) For a fixed k > 0, whenever L is sufficiently large we have Lf(L) > 0 and 

Lg(L) > 0 with fʹ′[Lf(L)] = kgʹ′[Lg(L)].  From part (e) above, h(L, k) is decreasing in 

L.  Suppose there is a lower bound δ > 0 such that h(L, k) ≥ δ for all L > 0.  This 

implies f[Lf(L)]/L + kg[Lg(L)]/L ≥ δ > 0 for all L > 0.  We have f(Lf)/Lf → 0 as Lf 

→ ∞.  This is obvious if f has a finite upper bound.  If f is unbounded, then using 

fʹ′(Lf) → 0 as Lf → ∞ from A1 gives the same result.  Likewise g(Lg)/Lg → 0 as Lg 

→ ∞.  The lower bound δ > 0 implies that Lf(L) → ∞ and Lg(L) → ∞ cannot both 

hold when L → ∞.  Therefore one or the other must have a finite upper bound M 

> 0.  Suppose Lf(L) ≤ M for all L.  Then fʹ′[Lf(L)] ≥ fʹ′(M) > 0 for all L > 0.  Since 
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Lf(L) has a finite upper bound, Lg(L) → ∞ must hold as L → ∞.  Thus kgʹ′[Lg(L)] 

→ 0 as L → ∞.  For sufficiently large L, this contradicts the first order condition 

fʹ′[Lf(L)] = kgʹ′[Lg(L)].  The same is true if Lg(L) has a finite upper bound.  Thus 

neither Lf(L) nor Lg(L) has an upper bound, so there is no lower bound δ > 0 and 

h(L, k) → 0 as L → ∞. 

 
Proof of Proposition 2. 

(a) For all y ≥ θAh(0) we have η(y/θA) = 0 due to (3a).  Also, θA > θB implies y ≥ 

θBh(0) so we have η(y/θB) = 0 due to (3b).  Therefore D(y) = 0 < N and no such y 

solves (4).  For y ≤ θAh(0), D(y) is continuous and decreasing because η(y/θA) is 

continuous and decreasing while η(y/θB) is continuous and non-increasing.  Also, 

D(y) → ∞ as y → 0  because h(L) → 0 as L → ∞ from Proposition 1(f).  Because 

N > 0 is finite, D[θAh(0)] = 0, D(0) = ∞, and D(y) is continuous and decreasing on 

(0, θAh(0)], there is a unique y(N) ∈ (0, θAh(0)) such that D[y(N)] = N. 

(b) Consider the unique value of y from part (a) that solves (3c) and choose LA and LB 

as in Proposition 2(b).  The fact that y solves (3c) implies that condition (c) in the 

definition of SRE holds.  Using y < θAh(0) when D(y) = N as in Proposition 2(a), 

along with LA = η(y/θA) > 0 as in (3a), implies θAh(LA) = y so that condition (a) in 

the definition of SRE holds.  From (3b), either (i) LB = η(y/θB) > 0, which implies 

θBh(LB) = y, or (ii) LB = η(y/θB) = 0, which implies θBh(0) ≤ y.  In either situation, 

condition (b) in the definition of SRE holds.  This shows that (y, LA, LB) is a SRE.  

To show that it is unique, suppose (yʹ′, LAʹ′, LBʹ′) is a different SRE.  Condition (a) 

in the definition of SRE implies LAʹ′ = η(yʹ′/θA) > 0 and condition (b) in the 
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definition of SRE implies either (i) LBʹ′ = η(yʹ′/θB) > 0 or (ii) LBʹ′ = η(yʹ′/θB) = 0 

with yʹ′ ≥ θBh(0).  Condition (c) in the definition of SRE implies λLAʹ′ + (1-λ)LBʹ′ = 

N.  This implies D(yʹ′) ≡ λη(yʹ′/θA) + (1-λ)η(yʹ′/θB) = N.  But from Proposition 2(a) 

there is a unique solution to (3c), so it must be true that y = yʹ′.  Hence LAʹ′ ≠ LA or 

LBʹ′ ≠ LB or both.  However, this is impossible because for a given value of y there 

is a unique solution for LA from (a) in the definition of SRE and the same is true 

for LB from (b) in the definition of SRE. 

(c) Continuity of y(N) follows from the continuity of D(y) in (3c).  y(N) is decreasing 

because D(y) is decreasing over the relevant range.  To show that y(N) → 0 as N 

→ ∞, use (3c) to write the identity D[y(N)] ≡ λη[y(N)/θA] + (1-λ)η[y(N)/θB] ≡ N 

where y(N) is decreasing.  Suppose there is a lower bound δ > 0 such that y(N) ≥ 

δ for all N > 0.  Because η is decreasing, D[y(N)] ≤ λη(δ/θA) + (1-λ)η(δ/θB) for 

all N > 0.  Choosing any N that exceeds the right hand side of this inequality gives 

a contradiction.  Thus there is no such lower bound and y(N) → 0 as N → ∞.  

  
Proof of Proposition 3. 

(a) Suppose θAh(0, k) > y*.  By Proposition 1 there is an LA > 0 such that θAh(LA, k) 

= y* or equivalently LA = η(y*/θA, k) > 0.  Set LB = η(y*/θB, k) ≥ 0 and N = λLA + 

(1-λ)LB > 0.  The triple (LA, LB, N) is an LRE because (LA, LB, y*) is a SRE for N.  

Any other LRE must have the same (LA, LB) in order to satisfy conditions (a) and 

(b) in the definition of SRE at the income y*.  It must therefore have the same N 

to satisfy condition (c) in the definition of SRE.  This establishes uniqueness. 
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(b) Suppose there is some (LA, LB, N) with N > 0 that is an LRE.  From condition (a) 

in the definition of SRE we must have θAh(LA, k) = y* with LA > 0.  However, this 

implies θAh(0, k) > y*, which contradicts the assumption θAh(0, k) ≤ y*.      

 
Proof of Proposition 4. 

(a) Necessity.  From (b) in the definition of VLRE, a necessary condition for a VLRE 

with such a value of k is LAg = LBg = 0.  Using Proposition 1, LAg = 0 occurs if and 

only if fʹ′(LA) ≥ kgʹ′(0).  From (a) in the definition of VLRE, another necessary 

condition is that (LA, LB, N) form an LRE for the given k.  In turn, this requires 

that (LA, LB, y*) form a SRE for N > 0.  From (a) in the definition of SRE, this 

implies θAh(LA, k) = y*.  Due to LAg = 0 this reduces to θAf(LA)/LA = y*.  There is 

an LA > 0 satisfying this equation iff θAfʹ′(0) > y*.  Together these results show the 

necessity of the conditions stated in Proposition 4(a). 

 Sufficiency.  Suppose the conditions in Proposition 4(a) are satisfied.  Compute 

LA, LB, and N as in the proposition.  We need to show that this gives a non-null 

VLRE.  LA > 0 implies N > 0 so any VLRE will be non-null.  Condition (b) in the 

definition of VLRE is satisfied because (i) fʹ′(LA) ≥ kgʹ′(0) implies LAg = 0 from 

Proposition 1; and (ii) θB < θA implies LB < LA, which implies fʹ′(LB) ≥ kgʹ′(0), and 

this in turn implies LBg = 0 from Proposition 1.  Condition (a) in the definition of 

VLRE is satisfied because the definition of LRE is satisfied. 

(b) When k = k*, condition (b) in the definition of VLRE is satisfied.  Condition (a) 

in the definition of VLRE reduces to the conditions for a (non-null) LRE.  From 

Proposition 3(a), these conditions can be satisfied iff θAh(0, k*) > y*.  When this 

inequality holds, condition (a) in the definition of SRE implies that LA > 0 
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satisfies θAh(LA, k*) = y*.  Condition (b) in the definition of SRE implies that if 

θBh(0, k*) > y* then LB > 0 satisfies θBh(LB, k*) = y*; otherwise LB = 0.  Finally, 

condition (c) in the definition of SRE gives N = λLA + (1-λ)LB > 0. 

 
Proof of Proposition 5. 

 By Proposition 4(a), if k < k* there is a non-null VLRE iff θAfʹ′(0) > y* and the 

value of LA such that θAf(LA)/LA = y* gives fʹ′(LA) ≥ kgʹ′(0).  This gives conditions (9a) 

and (9c).  It is automatic that only hunting is active.  Adding the requirement that only 

sites of type A are used implies LB = 0.  By Proposition 4(a) this holds iff θBfʹ′(0) ≤ y*.  

This gives condition (9b).  

 
Proof of Proposition 6. 

(a) In the baseline equilibrium LB
0 = 0 because type-B sites are not used.  Thus N0 = 

λLA
0 > 0 where LA

0 is the baseline population at a type-A site.  We have fʹ′(LA
0) ≥ k0gʹ′(0) 

from (9c).  Because N0 = λLA + (1-λ)LB is fixed in the short run and LB ≥ 0 under the new 

climate regime, we must have LA ≤ LA
0 under the new climate regime.  Because there is 

no change in k0, we have fʹ′(LA) ≥ k0gʹ′(0) so gathering cannot be used at the type-A sites.  

Because LB < LA in every SRE, we have fʹ′(LB) > k0gʹ′(0) so gathering cannot be used at 

type-B sites either.  

(b) In the baseline equilibrium regional population is N0 = λLA
0 = λη(y*/θA

0, k0) 

where the second equality follows from condition (a) in the definition of SRE and (3a).  

From (5), type-B sites are used in period t = 0 under the new climate regime iff N0 > 

N*(k0) ≡ λη[θB*h(0, k0)/θA*, k0] or equivalently η(y*/θA
0, k0) > η[θB*h(0, k0)/θA*, k0].  

Because η = h-1 is decreasing in its first argument for a fixed k0, this holds iff y*/θA
0 < 
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θB*h(0, k0)/θA*.  Due to (9c) for baseline equilibrium, h(0, k0) ≡ max {fʹ′(0), k0gʹ′(0)} = 

fʹ′(0).  Substituting this into the previous inequality gives the result in Proposition 6(b). 

 
Proof of Proposition 7. 

 First we prove some preliminary results.  Define Lh
 > 0 to satisfy θA*h(Lh, k0) ≡ 

θB*h(0, k0).  This Lh exists and is unique due to θA* > θB* and Proposition 1(d)-(f).  By 

the definition of SRE we have LB = 0 when 0 ≤ LA ≤ Lh and LB > 0 when LA > Lh.   

 Observe from (9c) in Proposition 5 that fʹ′(0) > k0gʹ′(0) holds.  Therefore h(0, k0) = 

fʹ′(0) from Proposition 1(f).  Define xf
0 > 0 by fʹ′(xf

0) ≡ k0gʹ′(0) as in Proposition 1(a).  At 

sites of type A we have LAg = 0 when 0 ≤ LA ≤ xf
0 and LAg > 0 when LA > xf

0. 

 Denote the SRE population at type-A sites by LA(N), which is continuous and 

increasing with LA(0) = 0 and LA(∞) = ∞.  These properties follow from Proposition 2 

and the properties of the inverse function η defined in (3).  Denote the SRE population at 

type-B sites by LB(N). 

 The properties of LA(N) imply that there is a unique Nh > 0 such that Lh ≡ LA(Nh).  

Furthermore, N ≤ Nh implies LA(N) ≤ Lh and LB(N) = 0, while N > Nh implies LA(N) > Lh 

and LB(N) > 0.  Similarly, there is a unique Nf > 0 such that xf
0 ≡ LA(Nf).  Furthermore, N 

≤ Nf implies LA(N) ≤ xf
0 and LAg(N) = 0, while N > Nf implies LA(N) > xf

0 and LAg(N) > 0. 

 Assume k0 < k as in Proposition 7(a).  We want to show that this implies Nh < Nf.  

Suppose instead Nh ≥ Nf.  This implies LB(Nf) = 0 and LA(Nf) = Nf/λ.  By the construction 

of Nh we have θA*h[LA(Nh), k0] = θB*fʹ′(0).  By Nf ≤ Nh, the fact that LA(N) is increasing, 

the fact that h is decreasing, and the earlier result LA(Nf) = Nf/λ, we have θA*h(Nf/λ, k0) ≥ 

θB*fʹ′(0).  Because gathering is not used at Nf, this reduces to θA*f(Nf/λ)/(Nf/λ) ≥ θB*fʹ′(0).  

From (10) we have θA*f(LA)/LA ≡ θB*fʹ′(0) and together these imply Nf/λ ≤ LA.  However, 
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by the construction of Nf, the definition of k in (10), and k0 < k we have k0 = fʹ′(Nf/λ)/gʹ′(0) 

< fʹ′(LA)/gʹ′(0) = k.   This implies Nf/λ > LA, which contradicts the previous result Nf/λ ≤ 

LA.  Therefore k0 < k implies Nh < Nf.   

 Now assume k0 > k as in Proposition 7(b).  We want to show that this implies Nh 

> Nf.  Suppose instead Nh ≤ Nf.  By construction we have LB(Nh) = 0 and LA(Nh) = Nh/λ. 

Also by the construction of Nh we have θA*h(Nh/λ, k0) = θB*fʹ′(0).  Because gathering is 

not used at Nh due to Nh ≤ Nf, this reduces to θA*f(Nh/λ)/(Nh/λ) = θB*fʹ′(0).  From (10) we 

have θA*f(LA)/LA ≡ θB*fʹ′(0) and thus Nh/λ = LA.  However, by the construction of Nf, the 

definition of k in (10), and k0 > k we have k0 = fʹ′[LA(Nf)]/gʹ′(0) > fʹ′(LA)/gʹ′(0) = k.  This 

implies that LA(Nf) < LA = Nh/λ = LA(Nh).  This is a contradiction because Nh ≤ Nf and 

LA(N) is increasing.  Therefore k0 > k implies Nh > Nf.  

  Finally, assume k0 = k as in Proposition 7(c).  We want to show that this implies 

Nh = Nf.  Suppose instead Nh > Nf.  Using this strict inequality in the argument from two 

paragraphs above, we can show that Nf/λ < LA.  Modifying the rest of the argument using 

k0 = k, we can show that Nf/λ = LA.  This is a contradiction.  Next suppose instead Nh < 

Nf.  Using the argument from one paragraph above, we can show that LA(Nh) = Nh/λ = LA.  

Modifying the rest of the argument using k0 = k gives LA(Nf) = LA = LA(Nh).  This is a 

contradiction because Nh < Nf and LA(N) is an increasing function.  Therefore k0 = k 

implies Nh = Nf.  

(a) Consider Proposition 7(a).  Assume k0 < k and thus Nh < Nf.  Let N* be the LRE 

population for the new climate and the productivity k0.  There are three cases: 

(a)(i) Suppose N* ≤ Nh.  This implies LB* = 0 in LRE.  LB* = 0 holds iff θB*h(0, k0) ≤ 

y*.  Because h(0, k0) ≡ max {fʹ′(0), k0gʹ′(0)} = fʹ′(0), this reduces to θB*fʹ′(0) ≤ y*.  
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(a)(ii) Suppose Nh < N* ≤ Nf.  The fact that Nh < N* implies LB* > 0 in LRE.  As above, 

this holds iff θB*fʹ′(0) > y*.  N* ≤ Nf implies LAg* = 0, which holds iff fʹ′(LA*) ≥ 

k0gʹ′(0), where LA* is defined by the LRE condition θA*h(LA*, k0) ≡ y* stated in 

Proposition 7. 

(a)(iii) Suppose Nf < N*.  The fact that Nh < N* implies LB* > 0 in LRE.  As above, this 

holds iff θB*fʹ′(0) > y*.  Nf < N* implies LAg* > 0, which holds iff fʹ′(LA*) < 

k0gʹ′(0), where LA* is defined as in case (ii) above. 

These cases are mutually exclusive and exhaustive, so the converses also hold:  

(a)(i)  If θB*fʹ′(0) ≤ y* then N* ≤ Nh < Nf; 

(a)(ii) If θB*fʹ′(0) > y* and fʹ′(LA*) ≥ k0gʹ′(0) then Nh < N* ≤ Nf; and 

(a)(iii) If θB*fʹ′(0) > y* and fʹ′(LA*) < k0gʹ′(0) then Nh < Nf < N*. 

The results in Proposition 7(a) are obtained as follows. 

(a)(i) If θB*fʹ′(0) ≤ y* then N* ≤ Nh < Nf.  We have N0 < N* because climate 

amelioration implies that the baseline VLRE in Proposition 5 has a lower regional 

population than the new LRE.  From A4 the regional population {Nt} is 

increasing and {Nt} approaches N* in the limit.   Thus Nt < Nh < Nf for all t ≥ 0.  

It follows that type-B sites never become active and gathering is never used.  The 

sedentism rate remains at zero because LB
t = 0 for all t ≥ 0. 

(a)(ii) If θB*fʹ′(0) > y* and fʹ′(LA*) ≥ k0gʹ′(0) then Nh < N* ≤ Nf.  It must be true that N0 ≤ 

Nh because type-B sites are not active in period t = 0 (by assumption the necessary 

condition for this to occur in Proposition 6(b) does not hold).  Again the regional 

population {Nt} is increasing and {Nt} approaches N* in the limit.   Thus Nt < Nf 

for all t ≥ 0 and gathering is never used.  However, there is some T > 0 such that 



	
   10 

Nt ≤ Nh for t = 0, 1 . . T-1 and Nt > Nh
 for t = T, T+1 . .  Therefore the type-B sites 

are not active for t < T but are active for t ≥ T.   The sedentism rate has a positive 

limit S* = LB*/LA* < 1 because LA(N) and LB(N) are continuous, N approaches 

N*, and 0 < LB* < LA*. 

(a)(iii) If θB*fʹ′(0) > y* and fʹ′(LA*) < k0gʹ′(0) then Nh < Nf < N*. Again N0 ≤ Nh, the 

regional population {Nt} is increasing, and {Nt} approaches N* in the limit.  As 

above there is some T > 0 such that Nt ≤ Nh for t = 0, 1 . . T-1 and Nt > Nh for t = 

T, T+1 . .  Therefore the type-B sites are not active for t < T but are active for t ≥ 

T.  In addition, there is some Tʹ′ ≥ T such that Nt ≤ Nf for t = 0, 1 . . Tʹ′-1 and Nt > 

Nf for t = Tʹ′, Tʹ′+1 . .  Therefore gathering is not used for t < Tʹ′ but is used at sites 

of type A for t ≥ Tʹ′.  The result for S* is obtained as in case (ii) above.  

(b) Consider Proposition 7(b).  Assume k0 > k and thus Nh > Nf.  Let N* be the LRE 

population for the new climate and the productivity k0.  There are three cases: 

(b)(i) Suppose N* ≤ Nf.  This implies LAg* = 0 in LRE, which holds iff fʹ′(LA*) ≥ k0gʹ′(0). 

(b)(ii) Suppose Nf < N* ≤ Nh.  This implies LAg* > 0 in LRE, which holds iff fʹ′(LA*) < 

k0gʹ′(0).  N* ≤ Nh implies LB* = 0 in LRE, which holds iff θB*h(0, k0) ≤ y*.  From 

h(0, k0) = fʹ′(0) this reduces to θB*fʹ′(0) ≤ y*.  

(b)(iii) Suppose Nh < N*.  This implies fʹ′(LA*) < k0gʹ′(0) as above.  Nh < N* implies LB* > 

0 in LRE, which holds iff θB*fʹ′(0) > y*.  

These cases are mutually exclusive and exhaustive, so the converses also hold:  

(b)(i)  If fʹ′(LA*) ≥ k0gʹ′(0) then N* ≤ Nf < Nh; 

(b)(ii) If fʹ′(LA*) < k0gʹ′(0) and θB*fʹ′(0) ≤ y* then Nf < N* ≤ Nh; and 

(b)(iii) If fʹ′(LA*) < k0gʹ′(0) and θB*fʹ′(0) > y* then Nf < Nh
 < N*. 
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The results in Proposition 7(b) are obtained as follows. 

(b)(i) If fʹ′(LA*) ≥ k0gʹ′(0) then N* ≤ Nf < Nh.  We have N0 < N* because climate 

amelioration implies that the baseline VLRE in Proposition 5 has a lower regional 

population than the new LRE.  From A4, regional population {Nt} is increasing 

and {Nt} approaches N* in the limit.   Thus Nt < Nf < Nh for all t ≥ 0.  It follows 

that type-B sites are never active and gathering is never used.  The sedentism rate 

remains at zero because LB
t = 0 for all t ≥ 0. 

(b)(ii) If fʹ′(LA*) < k0gʹ′(0) and θB*fʹ′(0) ≤ y* then Nf < N* ≤ Nh.  It must be true that N0 ≤ 

Nf because gathering is not used in period t = 0 due to Proposition 6(a).  Again the 

regional population {Nt} is increasing and {Nt} approaches N* in the limit.   Thus 

Nt < Nh for all t ≥ 0 and type-B sites are never active.  However, there is some T > 

0 such that Nt ≤ Nf for t = 0, 1 . . T-1 and Nt > Nf
 for t = T, T+1 . .  Thus gathering 

is not used for t < T but it is used at sites of type A for t ≥ T.  The sedentism rate 

remains at zero because LB
t = 0 for all t ≥ 0. 

(b)(iii) If fʹ′(LA*) < k0gʹ′(0) and θB*fʹ′(0) > y* then Nf < Nh < N*.  Again N0 ≤ Nf, the 

regional population {Nt} is increasing, and {Nt} approaches N* in the limit.  As 

above there is some T > 0 such that Nt ≤ Nf for t = 0, 1 . . T-1 and Nt > Nf for t = 

T, T+1 . . Thus gathering is not used for t < T but it is used at sites of type A for t 

≥ T.  In addition, there is some Tʹ′ ≥ T such that Nt ≤ Nh for t = 0, 1 . . Tʹ′-1 and Nt 

> Nh for t = Tʹ′, Tʹ′+1 . .  Thus type-B sites are not active for t < Tʹ′ but are active 

for t ≥ Tʹ′.  The sedentism rate has a positive limit S* = LB*/LA* < 1 because 

LA(N) and LB(N) are continuous, N approaches N*, and 0 < LB* < LA*. 
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(c) Consider Proposition 7(c).  Assume k0 = k and thus Nh = Nf.  Let N* be the LRE 

population for the new climate and the productivity k0.  There are two cases: 

(c)(i) Suppose N* ≤ Nf = Nh.  This implies LB* = 0 in LRE, which holds iff θB*fʹ′(0) ≤ 

y*.  It also implies that gathering does not occur at type-A sites in LRE, which is 

true iff fʹ′(LA*) ≥ k0gʹ′(0). 

(c)(ii) Suppose Nf = Nh < N*.  This implies LB* > 0 in LRE, which holds iff θB*fʹ′(0) > 

y*.  It also implies that gathering does occur at type-A sites in LRE, which is true 

iff fʹ′(LA*) < k0gʹ′(0). 

These cases are mutually exclusive and exhaustive, so the converses also hold: 

(c)(i) If θB*fʹ′(0) ≤ y* and fʹ′(LA*) ≥ k0gʹ′(0) then N* ≤ Nf = Nh. 

(c)(ii) If θB*fʹ′(0) > y* and fʹ′(LA*) < k0gʹ′(0) then Nf = Nh < N*. 

The results in Proposition 7(c) are obtained as follows. 

(c)(i) If θB*fʹ′(0) ≤ y* and fʹ′(LA*) ≥ k0gʹ′(0) then N* ≤ Nf = Nh.  We have N0 < N* due to 

climate amelioration.  As in other cases, the regional population {Nt} is increasing 

and approaches N* in the limit.  Thus Nt < Nf = Nh for all t ≥ 0.  It follows that 

type-B sites are never active and gathering is never used.  The sedentism rate 

remains at zero because LB
t = 0 for all t ≥ 0. 

(c)(ii) If θB*fʹ′(0) > y* and fʹ′(LA*) < k0gʹ′(0) then Nf = Nh < N*.  It must be true that N0 ≤ 

Nf = Nh because gathering is not used in period t = 0 due to Proposition 6(a).  The 

path {Nt} has the same properties as in case (i) above.  Thus there is some T > 0 

such that Nt ≤ Nf = Nh for t = 0, 1 . . T-1 and Nt > Nf = Nh for t = T, T+1 . .  It 

follows that type-B sites are not active and gathering is not used for t < T, but 

type-B sites become active and gathering is used at type-A sites for t ≥ T.  The 
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sedentism rate has a positive limit S* = LB*/LA* < 1 because LA(N) and LB(N) are 

continuous, N approaches N*, and 0 < LB* < LA*. 

  
Proof of Proposition 8. 

 Because gathering never shuts down after it begins, the only possibility for VLRE 

involves gathering productivity at the level k*.  The conditions for LRE require that sites 

of type B have LB* = 0 if θB*h(0, k*) ≤ y* and LB* > 0 if θB*h(0, k*) > y*. 

 In cases (a)(iii), (b)(iii), and c(ii) from Proposition 7, we have θB*fʹ′(0) > y*.  By 

the definition in Proposition 1(f), h(0, k*) ≡ max {fʹ′(0), k*gʹ′(0)} ≥ fʹ′(0).  Therefore in all 

of these cases we have θB*h(0, k*) > y*.  This implies LB* > 0 in the new VLRE.        

 In case (b)(ii) from Proposition 7, we have θB*fʹ′(0) ≤ y*.  From the definition of 

h(0, k*), the inequality θB*h(0, k*) > y* holds iff θB*k*gʹ′(0)  > y*.  This implies LB* > 0 

iff the latter inequality holds.    

 
Proof of Proposition 9. 

 The baseline VLRE in Proposition 5 has θA
0fʹ′(0) > y* due to (9a).  Suppose that 

only gathering is used at the type-A sites in the new VLRE.  This implies fʹ′(0) ≤ kgʹ′(LA*) 

where LA* is the local population at type-A sites and k is the gathering productivity in the 

new VLRE.  It is unimportant whether k < k* or k = k*.  If only gathering is used at the 

type-A sites, then LRE implies θA*kg(LA*)/LA*= y*.  Combining these results with the 

fact that the average product of gathering exceeds the marginal product, we obtain 

 
  y* < θA

0fʹ′(0) < θA*fʹ′(0) ≤ θA*kgʹ′(LA*) <  θA* kg(LA*)/LA* = y*    
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This is a contradiction.  It follows that type-A sites must use both hunting and gathering 

in the new VLRE. 

 

 

      

 

 


